Piece of cake – testing remote embedded devices made easy using open-hardware MuxPi

Samsung R&D Institute Poland, Paweł Wieczorek
Samsung Open Source Conference 2018
1. Introduction
2. Previous efforts
3. Idea
4. Hardware
5. Software
6. Next steps
7. Conclusion
Introduction
Release engineering

• Continuous platform development
• QA step prior pulling new changes
• Package internal tests are not enough
Remote accessibility

- Easy to store in a secure manner
- Less effort than per developer
- Better utilized when shared
Piece of cake (with MuxPi)
Piece of cake (with Dryad)
Piece of cake (with Dryad)
Piece of cake (with Dryads)
Piece of cake (with Dryads)
Piece of cake (with Dryads)
Previous efforts
LAVA

- Linaro Automated Validation Architecture
- Automation system for deploying operating systems
- Virtual and physical hardware supported
- Allows running boot, bootloader and system level tests
Statistics

Since May 2014 we:

- Ran 13,432 jobs on 65 unique trees and 12,921 unique kernels.
- Performed 2,039,645 builds on 277 unique defconfigs.
- Performed 3,494,550 boots on 271 unique boards, across 3 architectures and 34 unique SoCs.

https://kernelci.org/stats/
https://linux.codehelp.co.uk/the-problem-of-sd-mux.html
SD MUX – open hardware

https://git.tizen.org/cgit/tools/testlab/sd-mux
Autohat board (SD MUX-based)

https://github.com/resin-io/autohat-board
SD MUX issues

$ dmesg | tail -12
[98.375599] usb 3-1: new full-speed USB device number 12 using xhci_hcd
[98.487663] usb 3-1: device descriptor read/64, error -71
[98.703656] usb 3-1: device descriptor read/64, error -71
[98.919658] usb 3-1: new full-speed USB device number 13 using xhci_hcd
[98.919969] usb 3-1: Device not responding to setup address.
[99.123998] usb 3-1: Device not responding to setup address.
[99.327681] usb 3-1: device not accepting address 13, error -71
[99.439718] usb 3-1: new full-speed USB device number 14 using xhci_hcd
[99.440049] usb 3-1: Device not responding to setup address.
[99.644028] usb 3-1: Device not responding to setup address.
[99.847719] usb 3-1: device not accepting address 14, error -71
[99.847819] usb usb3-port1: unable to enumerate USB device
Idea
Constraints

- Only replaceable media
- No single point of failure parts
- No USB involvement (from test server)
Requirements

- **Minimum** external connections
- **Unified** remote access to target devices
- **Easy** setup and maintenance
Features

• User interface (often requested)
• Power measurement (increasing demand)
• Writing EDID to HDMI
Hardware
MuxPi components
MuxPi components
MuxPi components

Connectors
- ETH ts
- USB OTG
- SPIin USB
- UART
- 2x PWR
- BARREL

NanoPi NEO
- USB / UART SWITCH & ID
- 4-wire UART Level Shifter
- Watchdog Timer

Power Control & Current Measurement

Power Supply
- 4x LED, 2x Button, OLED Display

μC Cortex-M0
CTRL, ADC, DyPers, HDMI, GPIO, UI

SD-READER
- USB ETH

2-Port USB HUB

SD-MUX
- 2x USB-A
- μSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer

Connectors
- ETH PUT

20/50
MuxPi components

Connectors
- ETH 1S
- USB OTG
- SPI USB
- UART
- 2x PWR
- BARREL

NanoPi NEO
- USB / UART SWITCH & ID
- 4-wire UART Level Shifter
- Watchdog Timer
- Power Control & Current Measurement

μC Cortex-M0
CTRL, ADC, DyPers, HDMI, GPIO, UI

SD-MUX
- 2-Port USB Hub
- SD-Reader

Connectors
- USB ETH
- ETH OUT
- 2x USB-A
- µSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer

Power Supply
- 4x LED, 2x Button, OLED Display

2x 2-channel DyPers
MuxPi components

- ETH TS
- USB OTG
- SPI K USB
- UART
- 2x PWR
- BARREL

NanoPi NEO
- USB / UART SWITCH & ID
- 4-wire UART Level Shifter
- Watchdog Timer
- Power Control & Current Measurement

μC Cortex-M0
- CTRL, ADC, DyPers, HDMI, GPIO, UI

UI
- 4x LED, 2x Button, OLED Display

SD-MUX
- 2-Port USB HUB
- SD-READER
- 2x USB-A

Connectors
- USB ETH
- ETH OUT

Power Supply
- 2x 2-channel DyPers

μSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer
MuxPi components
MuxPi components
Essential MuxPi functions

- Switching a microSD card between DUT and TS
- Switching power supply for DUT
- Switching jumpers/buttons of DUT
- Measuring power consumption of DUT
- Writing EDID to DUT over HDMI connection
- Providing DUT connection (UART, USB, ETH, microSD card) over Ethernet
- Interacting with farm maintainer
Easy maintenance
Extensibility
Major improvements

- Independent (standalone)
- Aware of its state
- Easy to maintain
- Extensible from start
Building your own NanoPi NEO ≈ $10
Building your own NanoPi NEO ≈ $10
Parts ≈ $80

https://github.com/SamsungSLAV/muxpi
Building your own

NanoPi NEO $10
Parts $80
Soldering skills High

https://github.com/SamsungSLAV/muxpi
Building your own NanoPi NEO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoPi NEO</td>
<td>≈ $10</td>
</tr>
<tr>
<td>Parts</td>
<td>≈ $80</td>
</tr>
<tr>
<td>Soldering skills</td>
<td>High</td>
</tr>
<tr>
<td>Patience</td>
<td>A LOT</td>
</tr>
</tbody>
</table>
Building your own

NanoPi NEO ≈ $10
Parts ≈ $80
Soldering skills High
Patience A LOT

https://github.com/SamsungSLAV/muxpi
Software
Multitier architecture

- “Do One Thing and Do It Well”
- RESTful HTTP APIs
- Homogeneous solution stack
Responsibilities

• Who knows what requires verification?

• Who knows which actions are necessary?

• Who knows where can it be done?

• Who knows how to do it?
Responsibilities

• Who knows what requires verification? **Perun**

• Who knows which actions are necessary?

• Who knows where can it be done?

• Who knows how to do it?
Responsibilities

- Who knows what requires verification? **Perun**
- Who knows which actions are necessary? **Weles**
- Who knows where can it be done?
- Who knows how to do it?
Responsibilities

• Who knows what requires verification?
 Perun

• Who knows which actions are necessary?
 Weles

• Who knows where can it be done?
 Boruta

• Who knows how to do it?
Responsibilities

- Who knows what requires verification? **Perun**
- Who knows which actions are necessary? **Weles**
- Who knows where can it be done? **Boruta**
- Who knows how to do it? **Dryad (MuxPi-based)**
Dryad (farm)

- Manages single DUT
- Fully aware of its capabilities
- Requires only two interfaces
 - Power supply
 - Network connection (Ethernet)
Dryad (software)

$ fota --help
Usage of fota:
-card string
 path to SD card
-map string
 path to JSON formatted mapping
-md5 string
 URL to MD5SUMS file
-quiet
 suppress logging

$ stm --help
Usage of stm:
-dut
 connect SD card to DUT
-m duration
 time delay for tick command
-tick
 power off and on after 'm' (s)
-ts
 connect SD card to test server
Dryad (software)

Usage of fota:
- `-card string`
 path to SD card
- `-map string`
 path to JSON formatted mapping
- `-md5 string`
 URL to MD5SUMS file
- `-quiet`
 suppress logging

Usage of stm:
- `-dut`
 connect SD card to DUT
- `-m duration`
 time delay for tick command
- `-tick`
 power off and on after 'm' (s)
- `-ts`
 connect SD card to test server

```bash
$ fot6 --help
$ stm --help
```
Dryad (software)

$ fota --help
Usage of fota:
- card string
 path to SDcard
- map string
 path to JSON formatted mapping
- md5 string
 URL to MD5SUMS file
- quiet
 suppress logging

$ stm --help
Usage of stm:
- dut
 connect SD card to DUT
- m duration
 time delay for tick command
- tick
 power off and on after 'm' (s)
- ts
 connect SD card to test server
Dryad (software)

Usage of fota:
- `-card` string
 path to SD card
- `-map` string
 path to JSON formatted mapping
- `-md5` string
 URL to MD5SUMS file
- `-quiet`
 suppress logging

Usage of stm:
- `-dut`
 connect SD card to DUT
- `-m` duration
 time delay for tick command
- `-tick`
 power off and on after 'm' (s)
- `-ts`
 connect SD card to test server
• Dryad farm management system
• Schedules requests
 • Priority
 • Device groups
 • Delayed access
• Provides convenient access to selected Dryad
Dryad life cycle in Boruta

- Sets up tunnel
- Maintains environment
- Performs actions
- Unallocated
- Matches requirements
- Maintenance mode
Boruta on stack
• Lightweight testing framework
• Provides LAVA-like interface
• YAML job definition \(\rightarrow\) actions executed on DUT
 • Deploy
 • Boot
 • Test
 • Collect
Weles purpose

- Sets up tunnel
- Prepares environment
- Matches requirements
- Unallocated
- Actions performed
- Maintenance mode

35/50
Weles action sequence

- Parses YAML
- Collects assets
- Requests DUT
- Performs tests
Weles on stack
• OS images testing system
• Schedules verification (per new set of OS images)
• Automates QA step of Release Engineering Duty
Perun action sequence

1. Crawl URL
2. Report changes
3. Submit Weles jobs
4. Collect artifacts
5. Interpret results
Perun on stack
Keeping SLAV simple
Keeping SLAV simple (and decoupled)
Next steps
Future plans

Hardware

• Audio I/O
• USB Type C investigation
• NanoPi serial console on USB

Software

• Web interfaces for current layers
• Service state management
• Release engineer's layer
Further details

- MuxPi
 https://wiki.tizen.org/MuxPi

- SD MUX (deprecated – lesson learnt)
 https://wiki.tizen.org/SD_MUX
• GitHub
 https://github.com/SamsungSLAV

• Mailing list
 general@lists.tizen.org
Conclusion
• Quick setup
• Easy maintenance
• Responsibilities division
• Execution parallelization
• Environment unification
Questions?
Thank you!

Paweł Wieczorek
p.wieczorek2@samsung.com
Samsung R&D Institute Poland
• **Metropolis** – simple, modern Beamer theme
Pictures used

- https://commons.wikimedia.org/wiki/File:Tux.svg
- https://commons.wikimedia.org/wiki/File:Wayland_Lo.png
- https://commons.wikimedia.org/wiki/File:Enlightenment_logo_black.png
- https://developer.tizen.org/sites/default/files/images/about_tizen_1.png
- https://commons.wikimedia.org/wiki/File:ColoredBlankMap-World-10E.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_Korean_flag.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_Polish_flag.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_USA_flag.svg
- https://validation.linaro.org/static/docs/v2/_images/lava.svg
- https://wiki.linaro.org/Platform/LAB/LMP_in_practice
- https://forums.resin.io/uploads/resin/original/1X/88ab2e061cd644b18b95fa99e1de9ce6b98adfa44.jpg
- https://commons.wikimedia.org/wiki/File:Italian_traffic_signs_-_fermarsi_e_dare_precedenza_-_stop.svg
- https://farm9.staticflickr.com/8263/28955874330_d1b1202ae8_k_d.jpg
- https://commons.wikimedia.org/wiki/File:PEO-smiley_smile.svg